Explorar
Comunidades en español
Anunciar en Engormix

Raps Forrajero Brassica napus L. subsp. biennis: Manual de cultivos suplementarios Cap.10

Publicado: 7 de febrero de 2022
Por: Rolando Demanet Filippi, Dr. Ingeniero Agrónomo Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera; Cristian Canales Cartes,Ingeniero Agrónomo Jefe Desarrollo Agropecuario Watt ´s S.A; Juan Carlos García Diez, Ingeniero Agrónomo Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera. 2021. Manual de cultivos suplementarios. Plan Lechero Watt ´s – Universidad de La Frontera. Imprenta América, Valdivia, Chile.
El raps forrajero es una especie que proporciona forraje voluminoso de calidad. Este cultivo es una opción para pastoreo de verano, otoño e invierno. Desde siembra a primer pastoreo, se requieren entre 70 y 110 días. De acuerdo con las condiciones de fertilidad, época de uso y estado de las plantas post utilización, es posible lograr un rebrote que puede ser pastoreado en un tiempo no superior a 30 días.

Origen
Esta especie proviene del Asia Central (Tibet), Turquía, Hungría y Ukrania. Hoy se cultiva en todas las áreas templadas del mundo y en los trópicos de altura (1.500 a 2.000 msnm) (Hegi, 1986). En Chile, específicamente en la zona templada, se utiliza como planta forrajera desde hace dos décadas.

Descripción botánica
Brassica napus L. subsp. biennis se conoce como raps forrajero y en inglés forage rape. Pertenece a la familia Brassicaceae, género Brassica, especie Brassica rapa. Desarrolla diversos tallos con hojas muy frondosas y una raíz pivotante. La planta puede ser cosechada en forma directa por los animales en pastoreo. Es tolerante a las bajas temperaturas invernales y constituye una opción para el pastoreo de verano, otoño e invierno.
Raíz pivotante y hojas frondosas son una de las características de esta especie.
Raíz pivotante y hojas frondosas son una de las características de esta especie

Cultivo del raps forrajero
Requerimientos: El raps forrajero se adapta bien en una amplia gama de condiciones climáticas y de suelos. Se desarrolla en áreas donde se presenta precipitaciones entre 300 y 2.800 mm y responde a la fertilización que incluye nitrógeno, fósforo y, especialmente, azufre. Es sensible a la toxicidad por aluminio y manganeso en suelos ácidos y es relativamente tolerante a la salinidad del suelo (Zagal et al., 2003). No tolera las inundaciones eventuales ni el mal drenaje de los suelos.
Rotación de cultivos: Esta es una especie que presenta diversos beneficios en los sistemas de rotación de cultivos. En primer término, tiene la particularidad de hacer un excelente uso de la fertilización residual que dejan otros cultivos menos eficientes en el uso de nutrientes. La rápida y activa exploración radical que lleva a cabo en menos de 60 días, le permite la absorción del nitrógeno disponible en el suelo de manera más eficiente que algunas especies forrajeras como las ballicas perennes y de rotación (Malagoli et al., 2005).
Otra característica importante para su uso en los sistemas de rotación es su capacidad de mejorar las condiciones físicas del suelo y para reducir la presencia de patógenos. Su contenido en glucosinolatos contribuye a la biofumigación del suelo, que es un beneficio directo para cultivos posteriores (Morra & Kirkegaard, 2002; Matthiessen & Kirkegaard, 2006; García et al., 2008).
Periodo de siembra: Existen dos épocas de establecimiento para esta especie. Debido a la velocidad de crecimiento que posee, es factible sembrar raps en el periodo comprendido entre los meses de octubre y diciembre, con el objetivo de utilizarlo en el verano y parte del otoño. En áreas de secano es posible adelantar la siembra al mes de septiembre.
Las siembras de verano, que se hacen entre los meses de enero y marzo, están restringidas a sectores de riego o suelos con suficiente humedad, lo que permite la germinación de las semillas, la emergencia y el desarrollo de las plantas. El raps sembrado en esta fecha tiene por objetivo utilizar este cultivo suplementario en pastoreo, durante el periodo de otoño e invierno.
Independientemente de la época de siembra, en el momento del establecimiento es necesario considerar que la temperatura del suelo sea igual o superior a 10°C. Con temperaturas inferiores la emergencia de las plántulas se retrasa, lo que produce una fuerte competencia con las malezas en las primeras etapas de desarrollo del cultivo. Esto es, particularmente importante debido a que existen pocas opciones de control post emergente.
Sistema de siembra: Se establece en sistema de labranza convencional, con preparación del suelo. Para lograr un buen establecimiento, la cama de semilla debe ser mullida y muy bien compactada. El barbecho químico, realizado con anticipación 40 días antes de la siembra, permite disminuir la carga de malezas, factor que es necesario considerar debido a que este cultivo, en sus primeras etapas de desarrollo, es muy poco agresivo y su tasa de crecimiento inicial es muy baja.
Dosis de semilla: La dosis depende de la calidad de la cama de semilla. En suelos muy bien mullidos y compactados, la dosis de semilla es entre 3 y 4 kilos/ha. En suelos con preparaciones deficientes es necesario aumentar las dosis a 4 ó 5 kilos de semillas/ha.
Cultivares: Los cultivares de raps forrajero se clasifican en gigantes y enanos. Ambos tipos son distintos a los raps destinados a producción de aceite. Los de tipo gigante presentan un crecimiento vertical con múltiples tallos y los de tipo enano son más cortos y ramificados. Todos los cultivares de raps son clasificados como precoces cuando el periodo de siembra hasta la primera utilización es entre 90 y 100 días. En siembra de primavera se pueden establecer cultivares de diversa precocidad; sin embargo, en las siembras de verano se prefieren los cultivares precoces.
Principales cultivares de rasp forrajero disponibles en el mercado nacional.
Periodo de siembra: Existen dos épocas de establecimiento para esta especie. Debido a la velocidad de crecimiento que posee, es factible sembrar raps en el periodo comprendido entre los meses de octubre y diciembre, con el objetivo de utilizarlo en el verano y parte del otoño. En áreas de secano es posible adelantar la siembra al mes de septiembre. Las siembras de verano, que se hacen entre los meses de enero y marzo, están restringidas a sectores de riego o suelos con suficiente humedad, lo que permite la germinación de las semillas, la emergencia y el desarrollo de las plantas. El raps sembrado en esta fecha tiene por objetivo utilizar este cultivo suplementario en pastoreo, durante el periodo de otoño e invierno. Independientemente de la época de siembra, en el momento del establecimiento es necesario considerar que la temperatura del suelo sea igual o superior a 10°C. Con temperaturas inferiores la emergencia de las plántulas se retrasa, lo que produce una fuerte competencia con las malezas en las primeras etapas de desarrollo del cultivo. Esto es, particularmente importante debido a que existen pocas opciones de control post emergente. Sistema de siembra: Se establece en sistema de labranza convencional, con preparación del suelo. Para lograr un buen establecimiento, la cama de semilla debe ser mullida y muy bien compactada. El barbecho químico, realizado con anticipación 40 días antes de la siembra, permite disminuir la carga de malezas, factor que es necesario considerar debido a que este cultivo, en sus primeras etapas de desarrollo, es muy poco agresivo y su tasa de crecimiento inicial es muy baja. Dosis de semilla: La dosis depende de la calidad de la cama de semilla. En suelos muy bien mullidos y compactados, la dosis de semilla es entre 3 y 4 kilos/ha. En suelos con preparaciones deficientes es necesario aumentar las dosis a 4 ó 5 kilos de semillas/ha. Cultivares: Los cultivares de raps forrajero se clasifican en gigantes y enanos. Ambos tipos son distintos a los raps destinados a producción de aceite. Los de tipo gigante presentan un crecimiento vertical con múltiples tallos y los de tipo enano son más cortos y ramificados. Todos los cultivares de raps son clasificados como precoces cuando el periodo de siembra hasta la primera utilización es entre 90 y 100 días. En siembra de primavera se pueden establecer cultivares de diversa precocidad; sin embargo, en las siembras de verano se prefieren los cultivares precoces. Principales cultivares de rasp forrajero disponibles en el mercado nacional.
Fertilización: La corrección de la acidez del suelo, es una práctica necesaria en la siembra de raps forrajero. El objetivo de la corrección es generar en el suelo, al momento de la germinación de las plantas, un ambiente donde el pH del suelo sea superior a 6 y la saturación de aluminio inferior a 1%.
La enmienda se debe aplicar al menos con dos meses de anticipación al cultivo y en ella se debe considerar una proporción de 1:1 entre dolomita y sulfato de calcio (yeso). Por cada tonelada de dolomita que se aplique al suelo se produce un aumento de 0,2 puntos de pH. Además, por cada kilo de nitrógeno amoniacal que se aplique, se requieren 4 kilos de enmienda para neutralizarlo y evitar el incremento de la acidez en el suelo.
El Raps forrajero, es una planta de altos requerimiento de nutrientes. A la siembra, demanda una fertilización que considere 300 kilos de Superfosfato triple + 200 kilos de Sulpomag + 30 kilos de Boronatrocalcita por hectárea, equivalente a 530 kg/ha de la mezcla que contiene 26% fósforo, 8% potasio, 6% magnesio, 8% azufre y 0,1% boro. Debido que el boro es un elemento esencial para el desarrollo de este cultivo, se debe asperjar 1 litro de BoronMax, 1,5 litros de NBoron ó 750 gramos de Solubor/ha en 200 litros de agua, cuando las plantas posean las hojas totalmente expandidas y cubriendo el suelo.
La fertilización con nitrógeno (140 kilos Nitrógeno/ha), se aplica fraccionada: 50% post siembra y 50%, cuando el cultivo posea dos a tres hojas expandidas. No es recomendada las aplicaciones excesivas de nitrógeno al cultivo de raps forrajero, debido a que puede generar problemas de intoxicación por nitritos y nitratos.
Control de malezas: Existen diferentes opciones de control químico de malezas. En suelos con baja humedad, es recomendado el uso de herbicidas de pre siembra incorporados. En áreas de riego o con alta probabilidad de ocurrencia de precipitaciones de post siembra, es adecuado el uso de herbicidas de pre emergencia, los cuales se asperjan, inmediatamente después de la siembra.
En la post emergencia de las plantas se puede utilizar el control químico asperjando la mezcla de 200 cc Tordon 24 K + 300 cc Lontrel 3A + 100 cc LI 700/ha en 150 litros de agua. Esta fórmula, se aplica antes que las plantas tengan dos a tres hojas verdaderas. En caso de presencia de gramíneas, las opciones de control son 1,5 litros de Galant Plus/ha ó 1 litro de Centurion Super/ha, ambos deben ser aplicados en 150 litros de agua.
Opciones de herbicidas pre siembra y pre emergente en el cultivo de raps forrajero.
Opciones de herbicidas pre siembra y pre emergente en el cultivo de raps forrajero.
Control de plagas: Durante el desarrollo del cultivo, se presentan diversos ataques de insectos que afectan el desarrollo de las plantas. La mayoría de los insectos, generan importantes daños foliares, incluso en etapas iniciales de crecimiento. Pulgón, larvas minadoras y pilmes, pueden ser controlados con la aplicación de Lambdacialotrina en dosis de 160 cc de producto comercial/ha diluidos en 250 litros de agua.
La presencia de babosas es un problema que puede ocurrir en sectores húmedos, cuando hay exceso de material residual en superficie y la temperatura ambiente es alta. El uso de cebos pelletizados como Clartex o Toximol, en dosis de 6 kg/ha, puede aminorar el efecto sobre las plantas en hasta un 70%.

Utilización
Se utiliza en pastoreo entre los meses de diciembre a agosto. Su explosivo crecimiento en primavera permite un primer pastoreo temprano a finales de diciembre y un rebrote, de menor disponibilidad, que es consumido entre enero y febrero. En siembras de verano, el consumo en pastoreo se realiza a partir del mes de mayo y se puede extender hasta agosto. El rebrote está supeditado a la severidad del uso y a las condiciones climáticas del invierno.
El pastoreo se realiza a través de franjas largas y angostas que permiten controlar el consumo diario. Los niveles de consumo no superan los 5 kilos de materia seca por animal adulto, cantidad que habitualmente es consumida en tres horas.
Está comprobado el alto grado de aceptación de esta especie por los animales. Mediciones de predilección han demostrado que el raps forrajero es preferido por el ganado sobre otras alternativas. Su buen valor nutritivo y alto rendimiento permiten reducir el consumo de alimentos concentrados, mejorar el nivel de producción de leche y reducir los costos de alimentación del ganado (García et al., 2008).
SUPLEMENTARIOS - Raps Forrajero Brassica napus L. subsp. biennis - Image 1
Cálculo de franja diaria
Cálculo de franja diaria
Restricción de consumo: Durante el periodo de consumo en pastoreo, el exceso de ingesta puede provocar problemas gastrointestinales, fotosensibilidad, meteorismo y hemoglobinuria. Parte de estos problemas, son generados por la presencia de glucosinolatos, además de otros compuestos azufrados que producen efectos perjudiciales en la salud de los animales y en el nivel productivo de éstos.
Los niveles excesivos de S-metil cisteína sulfóxido en la planta se producen cuando en el suelo existe bajo nivel de fósforo y alta disponibilidad de nitrógeno y azufre. También se incrementan estos compuestos cuando la planta se encuentra en floración. Para reducir los problemas producidos por los compuestos anti nutricionales que tiene esta especie, se sugiere regular las aplicaciones de nitrógeno y azufre, además de suplementar al ganado de forma permanente con proteína y fibra (Barry, 2013). Por otro lado, no es adecuado que los animales consuman las plantas en el periodo de floración.
Hay evidencias de que la inclusión de raps forrajero en la dieta de los animales no debería superar el 70%. Sin embargo, con niveles superiores al 30% hay un riesgo mayor de que se produzcan problemas metabólicos como es el bocio y la anemia (Genever, 2015). Esto determina que los animales que consumen esta especie deben ser alimentados con dietas ricas en fibra efectiva y con niveles no superiores al 30% en base a materia seca.
Producción
La época de siembra, la nutrición de plantas, las condiciones climáticas, el momento y el número de utilizaciones, determinan la producción anual del raps forrajero. En siembras tempranas de primavera, con una sola utilización, es factible alcanzar una producción entre 14 y 16 ton MS/ha. Cuando se realizan dos utilizaciones, el rendimiento se puede mantener o reducir, dependiendo de las condiciones del cultivo post pastoreo.
En siembras de verano la producción es menor y suele ubicarse entre 6 y 12 ton MS/ha. El consumo en invierno se encuentra limitado por las condiciones del terreno y el rebrote; habitualmente no logra una producción que permita un consumo importante.
Producción de raps forrajero sembrado en primavera en seis localidades de la zona templada. Periodo 2011/2015. Coeficiente variación: 9,25%
Producción de raps forrajero sembrado en primavera en seis localidades de la zona templada. Periodo 2011/2015. Coeficiente variación: 9,25%
Producción de raps forrajero sembrado en verano en cinco localidades de la zona templada. Periodo 2011/2015. Coeficiente de variación: 8,98%  
Producción de raps forrajero sembrado en primavera en seis localidades de la zona templada. Periodo 2011/2015. Coeficiente variación: 9,25%
Calidad nutricional
Entre las especies de brassicas que se utilizan en alimentación de rumiantes, el raps forrajero presenta el mayor contenido de proteína, aunque tiene bajo contenido de carbohidratos solubles y fibra. En mediciones realizadas en la zona templada, los valores referidos a materia seca fluctuaron entre 8 y 14% de proteína cruda, entre 12 y 19% de FDN y entre 2,8 y 3,2 Mcal/kg MS de energía metabolizable.
Emisiones de N2O
En el mundo existen evidencias de la influencia que tienen las deposiciones de orina en los sistemas pastoriles sobre la pérdida de nitrógeno inorgánico en el agua y aire, en particular, las emisiones de óxido nitroso (N2O), que es un gas con efecto invernadero (Mackay, 2008). Las pérdidas de nitrógeno a través de la lixiviación, volatilización de amoníaco y producción de óxido nitroso (N2O) son características de los sistemas de pastoreo y se derivan, principalmente, de las excretas depositadas por los animales (Saggar et al., 2008). A nivel mundial, aproximadamente el 40% de las emisiones agrícolas de N2O se atribuyen a las producidas a partir de la orina y el estiércol depositados en los pastizales por animales de pastoreo (Oenema et al., 2005).
En un estudio reciente se puso de manifiesto que el factor de emisión de N2O para la orina de ovejas alimentadas con raps forrajero era menor que el de la orina de las ovejas alimentadas con pasturas de gramíneas más trébol blanco (Luo et al., 2015). La razón de esta diferencia se relacionaba con la presencia de glucosinolatos en la orina de las ovejas alimentadas con brassicas que podrían tener un impacto en las comunidades microbianas del suelo responsables de la nitrificación y la desnitrificación. Esto sugiere que no solo el raps forrajero, sino que todas las brassicas en general, podrían ser una alternativa de mitigación de las emisiones de N2O (Snyder et al., 2010). De forma similar se ha demostrado que los animales alimentados con brassicas tienen menores emisiones de metano por unidad de materia seca (Sun et al., 2012).
SUPLEMENTARIOS - Raps Forrajero Brassica napus L. subsp. biennis - Image 2

Águila, C.H., 1997. Pastos y Empastadas. Editorial universitaria. Octava edición. Santiago, Chile. 314p.

Aldrich & Leng, 1974. Producción moderna de maíz. Editorial hemisferio sur. Buenos Aires, Argentina. 308 p.

Andrews, A.C., Wright, R., Simpson, P.G., Jessop, R., Reeves, S. and Wheeler, J., 1991. Evaluation of new cultivars of triticale as dual-purpose forage and grain crops. Australian Journal of Experimental Agriculture, 31:769-775

Anrique, G.R.; Fuchslocher, P.R.; Iraira, H.S. & Saldaña, P.R., 2008.Composición de alimentos para ganado bovino. Facultad de ciencias agrarias, Universidad Austral de Chile. Fundación para la innovación agraria (FIA), INIA Remehue, Consorcio lechero. Imprenta América Limitada. Valdivia, Chile. 87p.

Anrique, R.; Molina, X.; Alfaro, M. & Saldaña, R., 2014. Composición de alimentos para el ganado bovino. Fundación para la Innovación Agraria, FIA, Ministerio de Agricultura, MINAGRI. Universidad Austral de Chile. Valdivia, Chile. 91p.

Ariel, A & Adine, G., 1994. Effect of Wheat Silage Maturity on Digestion and Milk Yield in Dairy Cows. Journal of Dairy Science 77:237-243.

Assefa, Y.; Staggenborg, S. & Prasad, V. 2010. Grain Sorghum water requirement and responses to drought stress: A review. Online. Crop Management doi:10.1094/CM-2010-1109-01-RV.

Aucal, S.; Balocchi, O. & Keim, J.P., 2015. Inclusión del Nabo forrajero (Brassica rapa) como suplemento estival en dietas ofrecidas a vacas lecheras en predios de la Provincia de Ranco. Agro Sur, 43(3): 9-18.

Baron, V.S.; Stevenson, K.R. & Buchanan-Smith, J.G. 1986. Proteolysis and fermentation of corn-grain ensiled at several moisture levels and under several simulated storage methods. Canadian Journal of Animal Science 66: 451–461.

Barry, T.N., 2013. The feeding value of forage brassica plants for grazing ruminant livestock. Animal Feed Science and Technology 181: 15– 25

Bernier, R. & Meneses, G., 1983. Fertilización de la col forrajera. Instituto de investigaciones agropecuarias (Chile), estación experimental Remehue (Osorno). Boletín técnico N°67 (67Re)

Bonnett, O.T., 1961. Morphology and development. In: Coffman F.A. (ed.). Oats and oat improvement. Agronomy Monography N° 8 American Society of Agronomy. Madison, Wisconsin. USA. pp: 41-74.

Borba, L.; Ferreira, M.; Guim, A.; Tabosa. J.; Gomes, H. & Fernandes, V. 2012. Nutritive value of different silage sorghum (Sorghum bicolor L. Moench) cultivars. Acta Scientiarum. Animal Sciences 4(2):123-129.

Bustos, W. 1968. Cultivo del sorgo. El Campesino (Chile). 99(8): 14-19.

Canseco, M.C., 2004. Rendimiento y calidad de dos cultivares de cebada (Hordeum vulgare L.) cosechados en ocho estados fenológicos diferentes. Tesis para optar al título de ingeniero agrónomo. Facultad de ciencias agropecuarias y forestales. Universidad de La Frontera. Temuco, Chile. 72p. Carpintero et al., 1979

Cavallarin, L.; Antoniazzi, S.; Tabacco, E. & Borreani, G., 2006. Effect of the stage of growth, wilting and inoculation in field pea (Pisum sativum L.) silages. II. Nitrogen fractions and amino acid compositions of herbage and silage. Journal of the science of food and agriculture. 86: 1383–1390.

Chen, Y. & Weinberg, Z.G., 2009. Changes during aerobic exposure of wheat silages. Animal Feed Science and Technology. 154: 76–82.

Cherney, J.H. & Marten, G.C., 1982. Small grain crop forage potential: I. Biological and chemical determinants of quality, and yield. Crop Science, 22: 227-231.

Chisi, M. & Peterson, G. 2018. Chapter 2: Breeding and agronomy. In: Taylor, T. & Duodu, K. (eds). Sorghum and millets: chemistry, technology and nutritional atributes (Second edition). Woodhead Publishing. Cambridge, United Kingdom. pp: 23-50.

Cid, M.C., 1994. Productividad de cinco especies de Vicia sp. Asociadas con Avena sativa cv. Nehuen, en el secano de la IX Región. Tesis para optar al título de ingeniero agrónomo. Facultad de ciencias agropecuarias, universidad de La Frontera. Temuco, Chile. 80p.

Cofré, B.P. & Soto, O.P. 1984. El sorgo: un recurso suplementario de verano. Investigación y progreso agropecuario. Quilamap(Chile). 21: 23-29

Cote, R.; Gerrath, M.; Poslusznyu, U. & Grodzinski, B., 1992. Comparative leaf development of conventional and semi-leafless peas (Pisum sativum). Canadian Journal of Botany 70(3): 571-580.

Crovetto, G.M.; Galassi, G.; Rapetti, L.; Sandrucci, A. & Tamburini. A. 1998. Effect of the stage of maturity on the nutritive value of whole crop wheat silage. Livestock Production Science 55:21–32 (1998).

Curtis, B. C.; Rajaram, S. & Gómez Macpherson, H., 2002. Bread wheat: improvement and production. Food and Agriculture Organization. Rome, Italy. 553p.

David, D.B.; Nörnberg, J.L.; Azevedo, E.B.; Brüning, G.; Kessler, J.D. & Skonieski, F.R., 2012. Nutritional value of black and white oat cultivars ensiled in two phenolo- gical stages. Revista Brasileira de Zootecnia. 39: 1409–1417.

De la Puente, V.H. 1982. Evaluación preliminar de cultivares de maíz y sorgos forrajeros en la provincia de Osorno. Tesis para optar al título de ingeniero agrónomo. Facultad de agronomía. Pontificia universidad Católica de Chile. Santiago, Chile. 87p.

De Ruiter, J.; Wilson, D.; Maley, S.; Fletcher, A., Fraser, T.; Scott, W.; Berryman, S.; Dumbleton, A. & Nichol, W., 2009. Management practices for forage brassicas. Forage Brassica development group. Christchurch, New Zealand. 62p.

Del Río, R.R., 1987. Efecto del nivel y parcialización de nitrógeno sobre el rendimiento y calidad de sorgo forrajero (Sorghum bicolor x Sorghum sudanense) en Valdivia. Tesis para opta al título de ingeniero agrónomo. Facultad de ciencias agrarias. Universidad Austral de Chile. Valdivia. 54p.

Demanet, F.R., 2014. Manual de especies forrajeras. Plan lechero Watts. Corfo. Universidad de La Frontera. Imprenta América. Valdivia, Chile. 163p.

Demanet, R.F. & García, D.J.C., 1992. Leguminosas anuales para producción de forraje suplementario. En: Latrille, L.L. & Balocchi, L.O. (eds.). Producción animal. Instituto de producción animal. Facultad de ciencias agrarias. Universidad Austral de Chile. Serie B-16. Valdivia, Chile. pp: 121-153.

Demanet, F.R., 2019. Manual de especies forrajeras. Plan lechero Waat ́s. Corfo. Universidad de la Frontera. CRP Impresores SPA. Concepción, Chile. 266p.

Dowswell, Ch.R.; Paliwal, R.L. & Cantrell, R.P. 1996. Maize in the third world. Westview Press. Boulder, Colorado, USA. 268p.

Dumont, L.J.C. 1987. Utilización de avena en producción de leche y carne. En: Latrille, L.L. & Balocchi, L.O. Conservación de forrajes. Instituto de producción animal. Facultad de ciencias agrarias. Universidad Austral de Chile. Serie B-12. Valdivia, Chile. pp: 322-337.

Edmisten, K.L.; Green, J.T.; Mueller, J.P. & Burns, J.C. 1998. Winter annual small grain forage potential. I. Dry matter yield in relation to morphological characteristics of four small grain species at six growth stages. Communcation Soil Science and Plant Analysis. 29(7-8):867-879

Ellies, Sch.A.; MacDonald, R. & Ramírez, C. 1991. Efecto de las propiedades mecánicas del suelo en el desarrollo radicular en suelos rojo-arcillosos del centro sur de Chile. Turrialba 41(4): 496-499.

Ellies, Sch.A.; MacDonald, R. & Ramírez, C. 1991. Efecto de las propiedades mecánicas del suelo en el desarrollo radicular en suelos rojo-arcillosos del centro sur de Chile. Turrialba 41(4): 496-499.

Endo, Y. & Ohashi, H., 1996. The pollen morphology of Vicia (Leguminosae). American Journal of Botany, 83(8): 955-960. ü Eubanks, M.W. 2001. The mysterious origin of maize. Economic Botany 55(4): 492-514.

Faiguenbaum, H.B., 1992. Producción de leguminosas hortícolas y maíces. Facultad de agronomía. Pontificia universidad católica de Chile. Santiago, Chile. 216p. ü Faiguenbaum, M.H. 2017. El cultivo del maíz. Impresora La discusión S.A. Chillán, Chile. 171p.

Faria, A.T.; Ferrerira, E.A.; Rocha, P.R.R.; Silva, D.V.; Silva, A.A.; Fialho, C.M.T. & Silva, A.F. 2015. Effect of trinexapac-ethyl on growth and yield of sugarcane. Planta daninha 33(3): 491-497.

Fraser, M.D.; Fychan, R. & Jones, R., 2001. The effect of harvest date and inoculation on the yield, fermentation characteristics and feeding value of forage pea and field bean silages. Grass Forage Science, 56: 218–230.Fraser et al., 2001

Garcia, S.C.; Fulkerson, W.J. & Brookes, S.U., 2008. Dry matter production, nutritive value and efficiency of nutrient utilization of a complementary forage rotation compared to a grass pasture system. Grass Forage Science, 63: 284–300.

Genever, L. 2015. Using brassicas for better returns. Beef and sheep BRP manual 6. Agriculture and horticulture development board. Kenilworth, Warwickshire, United Kingdom. 13p.

Gibbs, S.J. & Saldias B. 2014. Fodder beet in the New Zealand dairy industry. In: Proceedings of the annual conference of the south island dairy event, 23-25 June, Invercargill, New Zealand. pp. 237-246.

Gibbs, S.J. & Saldias, B. 2014. Feeding fodder beet in New Zealand beef and sheep production. pp. 83-90. In: Proceedings of the society of sheep and beef veterinary association, 16-20 June, Hamilton, New Zealand.

Gibbs, S.J.; Hodge, S.; Saldias, B.; Walsh, D.; Hastings, C.; Williams, N.; Davis, P.; Trotter, C.; de Ruiter, J.M.; Waugh, S. & Williams, D., 2015. Determining sources of variation in yield assessments of fodder beet crops in New Zealand: how many samples are needed. Agronomy New Zealand 45: 55-68.

GRDC, 2018. GrowNotes: Cereal rye. Section 1. Planning and paddock preparation. Australian goverment. Grains research & developement corporation. Canberra, Australia. 42p.

Hamaker, B.R.; Mohamed, A.A.; Habben, J.E.; Huang, C.P. & Larkins, B.A. 1995. Efficient procedure for extracting maize andsorghum kernel proteins reveals higher prolamin contents than the conventional method. Cereal Chemistry 72: 583–588.

Hazard, S.; Romero, O.; García, F.; Cañas, R.; Beratto, E.; Godoy, J.; Palacios, M.; Navarro, R. & Mardones, P., 2001. Evaluación de variedades de cebadas forrajeras (Hordeum vulgare L.) introducidas a Chile para alimentación de ganado vacuno lechero (Parte I: producción de forraje). En: García, F. & Cretton, P (ed.) Resúmenes reunión anual de la sociedad chilena de producción animal. (Sochipa). 25-27 de julio. Santiago. Chile. pp: 412-413.

Harper, M. T;. Giallongo, J. Oh. F.; Roth, G. W. & Hristov A. N. 2017. Inclusion of wheat and triticale silage in the diet of lactating dairy cows. Journal of Dairy Science 100(8): 6151–6163

Henry,C. 2000. Fodder beet. In: Bradshow, J.E. (ed.) Root and tuber crops. Sringer. New York, USA. pp: 221-243.

Hoffman, P.C.; Esser, N.M.; Shaver, R.D.; Coblentz, W.K.; Scott, M.P., Bodnar, A.L., Schmidt, R.J. & Charley, R.C. 2011. Influence of ensiling time and inoculation on alteration of the starch-protein matrix in high-moisture corn. Journal of Dairy Science 94(5): 2465–2474.

Honorato, P.R. 2000. Manual de edafología. Facultad de agronomía e ingeniería forestal. Ediciones universidad católica de Chile. Cuarta edición. Imprenta Salesianos S.A. Santiago, Chile. 241p.

House, R. 1985. Guide to sorghum breeding. 2nd edition. International crops research institute for the semi-arid tropics. Patancheru, India. 206p.

Ide, S.G., 1986. Efecto de la fecha de siembra sobre la productividad del sorgo forrajero (Sorghum bicolor x Sorghum sudanense) en Valdivia. Tesis para opta al título de ingeniero agrónomo. Facultad de ciencias agrarias. Universidad Austral de Chile. Valdivia. 48p.

Jedel, P.E. & Helrn, H., 1993. Forage potential of pulse-cereal mixtures in central Alberta. Canadian journal of plant science, 73: 437-444

Jurjanz, S. & Monteils, V. 2005. Ruminal degradability of corn forages depending on the processing method employed. Animal Research 54(1): 3-15.

Kaiser, A.G.; Piltz, J.W., Burns, H.M. & Griffiths, N.W. 2004. Successful Silage. Dairy Australia NSW. Department of Primary Industries. New Soith Wales, Australia. 468p.

Kato, Y.T.A.; Mapes, S.C.; Mera, O.L.M.; Serratos, H.J.A. & Bye, B.R.A., 2009. Origen y diversificación del maíz: una revisión analítica. Universidad Nacional Autónoma de México, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Editorial Impresora Apolo, S.A. de C.V. México, D.F., México. 116 pp.

Kavanagh, V. & Hall, L., 2015. Biology and biosafety. En: Eudes, F.(ed) Triticale. Springer.Berlin, Germany. pp: 3–13.

Kennely, J.J. & Weinberg, Z.G. 2003. Small grain silage. In: Buxton, D.R.; Muck, R.E. & Harrison, J.H. (eds.). Silage Science and Technology, Agronomy 42. ASA, CSSA and SSSA, Inc., Madison, Wisconsin, United State. pp: 141–198.

Khvostova. V.V., 1983. Genetics and breeding of peas. Oxonian press. London, England. 293p.

Kozloski, G.V.; Cadorin R.L. Jr.; Härter, C.J.; Oliveira, L., Alves, T.P.; Mesquita, F.R. & Castagnino, D.S. 2009. Effect of suplemental nitrogen source and feeding frequency on nutrient supply to lambs fed a kikuyu grass (Pennisetum clandestinum) hay-based diet. Small Ruminant Research 81: 112–118

Kullmer, N.K., 1987. Efecto del nivel y parcialización de nitrógeno sobre el rendimiento y calidad de sorgo forrajero variedad Funk´s 192F (Sorghum bicolor x Sorghum sudanense) en Valdivia. Tesis para opta al título de ingeniero agrónomo. Facultad de ciencias agrarias. Universidad Austral de Chile. Valdivia. 48p.

Kupicha, F.K., 1977. The delimitation of the tribe Vicieae and the relationships of Cicer L. Botanical Journal of the Linnean Society, 74: 131-162.

Li, R., Zhang, H., Zhou, X., Guan, Y., Yao, F., Song, G., Wang, J., Zhang, C., 2010. Genetic diversity in Chinese sorghum landraces revealed by chloroplast simple sequence repeats. Genetic resources and crop evolution. 57: 1–15.

Listman, G.M. & Estrada, F.P., 1992. Mexican prize for the giant maize of Jala: source of community pride and genetic resources conservation. Diversity 8: 14-15.

Liua, Beiyi; Huana, Hailin; Gua, Hongru; Xua, Nengxiang; Shen, Qin & Ding, Chenlong, 2019. Dynamics of a microbial community during ensiling and upon aerobic exposure in lactic acid bacteria inoculation-treated and untreated barley silages. Bioresource Technology 273: 212–219.

López, J.R., 1991. Breeding forage and dual purpose triticale in Bordenave, Argentina. In: Proceedings of the 2rid Int. Triticale Symposium, 1-5 October 1990, Passo Fundo, Brazil. CIMMYT, pp. 161-163.

Lunnan, T. 1989. Barley-pea mixtures for whole crop forage. Effects ofdifferent cultural practices on yield and quality. Norwegian Journal of Agricultural Science, 3: 57-71.

Luo, J.; Sun, X.Z.; Pacheco, D.; Ledgard, S.F.; Lindsey, S.B.; Hoogendoorn, C.J.; Wise, B. & Watkins, N.L., 2015. Nitrous oxide emission factors for urine and dung from sheep fed either fresh forage rape (Brassica napus L.) or fresh perennial ryegrass (Lolium perenne L.). Animal, 9: 534–543.

Mangelsdorf, P.C. & Reeves, R.G. 1959. The origin of corn. I. Pod corn, the ancestral form. Harvard University. Botanical Museum Leaflets. 18(7): 329-355. ü Mangelsdorf, P.C. & Reeves, R.G. 1959. The origin of corn. IV. Place and time of origin. Harvard University. Botanical Museum Leaflets. 18(10): 413-439.

Mangelsdorf, P.C. & Reeves, R.G. 1959.The origin of corn. III.Modern races, the product of teosinte introgression. Harvard University. Botanical Museum Leaflets. 18(9): 389-411. ü Mangelsdorf, P.C., 1961. Introgression in maize. Euphytica 10:157-168.

Matsuoka, Y.; Vigouroux, Y.; Goodman, M.M.; Sánchez, J.J.; Buckler, G.E. & Doebley, J. 2002. A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences 99 (6): 6080-6084.

Matthei, O; Matthei, J.; Marticorena, C. & Rodríguez, R. 1995. Manual de malezas que crecen en Chile. Alfabeta Impresiones. Santiago, Chile. 545 p

McDonald, G. K., 2003. Competitiveness against grass weeds in field pea genotypes. Weed Research. 43: 48–58.

Mera, 1989. Producción y mecanizada de arveja de grano seco. En: Mera M.M. (ed). V Seminario nacional de leguminosas de grano. Estación experimental Carillan- ca. Instituto de investigaciones agropecuarias. Temuco, Chile. pp: 153-181.

Mergoum, M.; Singh, P.K.; Anderson, J.A.; Peña, R.J.; Singh, R.P.; Xu, S.S. & Ransom, J.K., 2009. Spring wheat breeding. En: Carena, M.J. Cereal. Handbook of plant breeding. Springer, New York, NY. USA. pp:127-156.

Mergoum, M. & Macpherson, H. G., 2004. Triticale Improvement and Production. Plant production and protection paper 179. Food & Agriculture Organization. Rome, Italy. 154 p.

Miracle, M.P., 1965. The introduction and spread of maize in africa. The Journal of African History 6(1): 39–55.

Moate, P.; Dalley, D.; Martin, K. & Grainger, C., 1998. Milk production responses to turnips fed to dairy cows in mid lactation. Australian journal of experimental agriculture. 38: 117-123.

Moate, P.; Dalley, D.; Roche, J.; Grainger, C.; Hannah, M. & Martin, K., 1999. Turnips and protein supplements for lactating dairy cows. Australian Journal of Experimental Agriculture, 39: 389-400.

Montemayor, T.J.; Suárez, G.E.; Munguía, L.J.; Mendoza, V.R., Segura, C.M.A. & Woo, R.J., 2018. Acolchados plásticos para la producción de maíz (Zea mays L.) forrajero en la Comarca Lagunera. Revista Mexicana de Ciencias Agrícolas. 20: 4107-4115.

Mu-Forster, C. & Wasserman, B.P. 1998. Surface localization of zein storage proteins in starch granules from maize endosperm: Proteolytic removal by thermolysin and in vitro cross-linking of granule-associated polypeptides. Plant Physiology 116: 1563–1571.

Opazo, R. 1932. Agricultura. Monografía cultural de plantas agrícolas. Cereales y plantas escardadas, horticultura. Tomo II. Imprenta Cervantes, Santiago, Chile. pp:434 – 465.

Owens, F.N.; Zinn, R.A. & Kim, Y.K. 1986. Limits to starch digestion in the ruminant small intestine. Journal Animal. Science 63:1634–1648.

Pahlow, G.; Muck, R.E.; Driehuis, F.; Oude-Elferink, S.J.W.H. & Spoelstra, S.F., 2003. Microbiology of ensiling. In: Buxton, D.R.; Muck, R.E. & Harrison, J.H. (Eds.), Silage Scienceand Technology. American Society of Agronomy, Madison, WI, United State. pp. 31–93.

Papastylianou, I., 1990. Response of pure stands and mixtures of cereals and legumes to nitrogen fertilization and residual effect on subsequent barley. Journal of Agricultural Science. 115: 15-22.

Parga, J.; Barrientos, L.; Pulido, R.; Canto, F.; Lanuza, F.; Balocchi, O. & Uribe, C., 2010. Suplementación estival de vacas lecheras a pastoreo con Nabo forrajero (Brassica rapa L.): Respuesta productiva. En: Hepp, K.Ch. (ed.) Libro de resúmenes XXXV congreso de la sociedad chilena de producción animal. Coyhaique, Chile. pp: 117-118.

Parga, J.; Lanuza, F.; Pulido, R.; Balocchi, O.; Canto, F.; Campo, S. & Uribe, C., 2009. Suplementación estival de vacas lecheras a pastoreo con Nabo forrajero (Brassica rapa L.). En: Alfaro, M. (ed.). Libro de resúmenes XXXIV congreso de la sociedad chilena de producción animal. Pucón, Chile. pp: 73-74

Pichard, G. & Águila, J.C., 1983. Cultivos forrajeros suplementarios. Gerencia de desarrollo de la corporación de fomento de la producción. Facultad de agronomía. Pontificia universidad católica de Chile. Santiago, Chile. 31p.

Pichard, G., 1986. Sorgo forrajero. El Campesino (Chile). 117(12): 40-46.

Polhill, R.M. & Raven P.H., 1981. Advances in legume systematics. Parts 1 & 2. The royal botanic gardens, Kew. Richmond, England. 1049p.

Robledo, F. & Martin, L. 1988. Aplicación de los plásticos en la agricultura. Ediciones Mundi-Prensa. Madrid, España. 573 p.

Rodríguez, R.; Marticorena, C.; Alarcón, D.; Baeza, C.; Cavieres, L.; Finot, V.; Fuentes, N.; Kiessling, A.; Mihoc, M.; Pauchard, A.; Ruiz, E.; Sanchez, P. & Marticorena, A., 2018. Catálogo de las plantas vasculares de Chile. Gayana Botánica, 75(1): 1-430

Rondahl, T.; Bertilsson, J. & Martinsson, K., 2011. Effects of maturity stage, wilting and acid treatment on crude protein fractions and chemical composition of whole crop pea silages (Pisum sativum L.). Animal feed science and technology. 163: 11–19.

Rosales, L.J.C. 1999. El cultivo de la cebada (Hordeum vulgare) y sus principales Plagas y Enfermedades. Monografía. Universidad autónoma agraria Antonio Narro. División de agronomía. Buenavista, Saltillo, Coahuila, México. 91p.

Royo, C.; Insa, J.A.; Boujenna, A.; Ramos, J.M.; Montesinos, E. & Garía del Moral., L.F. 1994. Yield and quality of spring triticale used for forage and grain as influenced by sowing date and cutting stage. Field Crops Research 37: 161-168.

Salawu, M.B.; Adesogan, A.T.; Weston, C.N. & Williams, S.P., 2001. Dry matter yield and nutritive value of pea/wheat bi-crops differing in maturity at harvest, pea to wheat ratio and pea variety. Animal Feed Science and Technology. 94: 77–87.

Salcedo, D.G., 1998. Valor nutritivo y degradabilidad ruminal de Avena sativa y Vicia sativa. Pastos, 28 (1): 71 -85.

Sarrantonio, M. and E. Gallandt. 2003. The role of cover crops in North American cropping systems. Journal of Crop Production 8:53-74.

Soto, O.P.; Figueroa, R.M. & Martínez, R.C., 1984. Frecuencia e intensidad de utilización de un híbrido de sorgo x pasto sudan en suelos arroceros (Ñuble, VII Región). Agricultura técnica (Chile). 44(3): 237-243.

Staples, C. R.; Fernando, R. L.; Fahey. Jr., G. C.; Berger, L. L. & Jaster, E. H. 1984. Effects of intake of a mixed diet by dairy steers on digestion events. Journal of Dairy Science 67:995-1006

Stehr, W.W., 1987. Ensilaje de maíz en producción de leche y carne. En: Latrille, L.L. & Balocchi (eds.). Conservación de forrajes. Instituto de producción animal. Facultad de ciencias agrarias. Universidad Austral de Chile. Seri B-12. Valdivia, Chile. pp: 338-351.

Sun, X.Z.; Waghorn, G.C.; Hoskin, S.O.; Harrison, S.J.; Muetzel, S. & Pacheco, D., 2012. Methane emissions from sheep fed fresh brassicas compared to perennial ryegrass. Animal feed science technology, 176: 107–116.

Sundberg,M.D. & Orr, A.R. 1986. Early inflorescence and floral development in Zea diploperennis, diploperennial teosinte. American Journal of Botany 73(12): 1699-1712.

Tari, I.; Laskay, G.; Takacs, Z. & Poor, P., 2013. Response of sorghum to abiotic stress: A review. Journal of agronomy and crop science 199: 264–274.

Teuber, K.N. 2000. El triticale como recurso forrajero en la X región. En: Granger, D.; Hazard, S.; Hewstone, C.; Rojas, C.; Romero, O. & Teuber, N. (Editores). El triticale en el sur de Chile. Boletín INIA N°12. Instituto de investigaciones agropecuarias. Centro regional Carillanca. Temuco, Chile. pp: 29-32.

Teuber, N., 1985. Cultivo y utilización de la col forrajera. Programa praderas. Centro regional de investigación Remehue. Instituto de investigaciones agropecuarias. Ministerio de agricultura. Boletín técnico N° 61 (11 re.). Osorno, Chile. 32p.

Teuber, N.; Goic, L. & Navarro, H., 2000. Fechas de siembra, acumulación de materia seca y calidad bromatológica de cebada para ensilaje. Evaluación agronómica. Resúmenes de la XXV reunión anual de la sociedad chilena de producción animal (Sochipa). 18 a 20 de octubre. Puerto Natales, Chile. pp: 69-70

Teuber, N.; Navarro, H.; Goic, L. % Angulo, L., 2001. Distintas fechas de siembra, acumulación de materia seca y calidad bromatológica de cebada para ensilaje. En: García, F. & Cretton, P (ed.) Resúmenes reunión anual de la sociedad chilena de producción animal. (Sochipa). 25-27 de julio. Santiago. Chile. pp 446-447

Vanderwerff, L.; Ferraretto, L.; Salvati, G. & Shaver, R. 2014. Update on Corn Shredlage for Dairy Cows. Focus on forage 16(4): 1-3.

Venkateswaran, K.; Elangovan, M. & Sivaraj, N. 2018. Chapter 2: Origin, domestication and diffusion of Sorghum bicolor. IN: Aruna, C.; Visarada, K.B.R.S.; Bhat, B.V. & Tonapi, V.A. (eds.) Breeding sorghum for diverse end uses. Woodhead Publishing. Cambridge, United Kingdom. pp: 23-50.

Wall, D.A.; Friesen, G.H. & Bhati, T.K., 1991. Wild mustard interference in traditional andsemi-leafless field pea. Canadian Journal of Botany 71:473-480.

Wannaseka, L.; Ortnerb, M.; Kaula, HP., Amonc, B. & Amonc, T., 2019. Double-cropping systems based on rye, maize and sorghum: Impact of variety and harvesting time on biomass and biogas yield. European Journal of Agronomy 110: 125934

Warwick, S.I. & Hall, J.C., 2009. Phylogeny of Brassica and wild relatives. In: Gupta, S.K. (ed.), Biology and breeding of crucifers. CRC Press, Boca Raton, Florida, USA. pp: 19-36.

Whitson, T. 1996. Weeds of the west. 5TH Edition. Pioneer of Jackson Hole, Jackson, Wyoming, USA. 630p.

Wilkes, H.G. 1979. México and Central América as a centre for the origin of agriculture and the evolution of maize. Journal of Crop Improvement 6(1): 1-18.

Wilkins, R.J. & Jones, R., 2000. Alternative home-grown protein sources for ruminants in the United Kingdom. Animal feed science and technology. 85: 23–32.

Wilkinson, J.M. & Davies, D.R., 2013. The aerobic stability of silage: key findings and recent developments. Grass Forage Science. 68, 1–19.

Yosef, E.; Carmi, A.; Nikbachat, M.; Zenou, A.; Umiel, N. & Miron, J., 2009. Characteristics of tall versus short-type varieties of forage sorghum grown under two irrigation levels, for summer and subsequent fall harvests, and digestibility by sheep of their silages. Animal feed science and technology 152: 1–11

Zagal, V.E.; Hirzel C.J. & Vidal, P.I., 2003. Evaluación de la recomendación de fertilización nitrogenada para cultivos anuales en suelos de origen volcánico usando un modelo de simulación. Agricultura técnica (Chile), 63(1): 94-104.

Brandolini, A. 1970. Maize. In: Frankel, O.H. & Bennett, E. (eds.) Genetic Resources in Plants—Their Exploration and Conservation. Oxford: Blackwell Scientific Publications. Philadelphia. USA. Pp: 273-309.

Contreras, T.D. & Caviedes, E. 1977. Recursos forrajeros para el secano de la zona comprendida entre Aconcagua y Arauco. En Porte, F.E. (ed.) Producción de carne bovina. Editorial universitaria. Santiago, Chile. pp: 21-44.

Altamirano, S.S., 1978. Cultivo de maíz. Estación experimental La Platina. Instituto de investigaciones agropecuarias. Boletín N° 21. Santiago, Chile. 62p.

Finley, J.W.; Pallavicini, C. & Kohler, G.O., 1980. Partial isolation and characterisation of Medicago sativa leaf proteases. Journal of the science of food and agriculture. 31: 156–161

Cherney, J.H.; Marten, G.C. & Goodrich, R.D., 1983. Rate and extent of cell wall digestion of total forage and morphological components of oats and barley. Crop Science, 23: 213-216.

Olivares, E.A.; Yung, L.C. & Contreras, T.D. 1984. Posibilidades del sorgo (Sorghum bicolor (Linn) Moench) como recurso forrajero suplementario para el secano costero, comuna La Unión, X Región. Avances en producción animal. 9(1-2): 29-41.

Olivares, E.A.; Yung, L.C. & Contreras, T.D. 1984. Posibilidades del sorgo (Sorghum bicolor (Linn) Moench) como recurso forrajero suplementario para el secano costero, comuna La Unión, X Región. Avances en producción animal. 9(1-2): 29-41.

McKersie, B.D., 1985. Effect of pH on proteolysis in ensiled legume forage. Agronomy Journal. 77: 81–86. ü Stace, C.A., 1987. Triticale: a case of nomenclatural mistreatment. Taxon 36(2): 445-452.

Muck, R.E., 1988. Factors influencing silage quality and their implications for management. Journal of dairy science. 71: 2992–3002.

Camide, V.; Mascarenhas-Ferreira, A. & Guedes-Pinto, H., 1988. A comparative study of triticale lines as a forage crop. Tagungsbet. Akad. Landwirtschaftswiss. DDR, 266: 591-604.

Molina, J., 1989. La cebada. Ministerio de agricultura, pesca y alimentación. Ediciones Mundi prensa. Madrid. España. 256p.

Hanelt, P. & Mettin, D., 1989. Biosystematics of the genus Vicia L. (Leguminosae). Annual Review of Ecology, Evolution, and Systematics, 20: 199-223.

Dumont, J.C. & Lanuza, F. 1990. Producción y composición química de la avena (Avena sativa L.) en diferentes estados de desarrollo. Agricultura Técnica (Chile) 50:1-6.

Klein, F.; Elizalde, F.; Lanuza, F. Parga, J. & Meyer, F. 1990. Prospección de rendimiento y calidad de ensilajes de maíz en la zona sur. Informe técnico programa de producción de leche. estación experimental Remehue. INIA. Osorno, Chile. pp: 59-71.

Charmley, E. & Veira, D.M., 1990. Inhibition of proteolysis at harvest using heat in alfalfa silages: effects on silage composition and digestion by sheep. Journal of animal science. 68: 758–766.

Acosta, Y.M.; Stallings, C.C.; Polan, C.E. & Miller, C.N. 1991. Evaluation of barley silage harvested at boot and soft dough stages. Journal Dairy Science, 74(1):167 - 176.

Chapko, L.B; Brinkman, M.A. & Albrecht, K.A., 1991. Oat, oat-pea, barley, and barley-pea for forage yield, forage quality, and alfalfa establishment. Journal of Production Agriculture, 4: 486-491.

McDonald, P.; Henderson, N. & Heron, S., 1991. The Biochemistry of Silage, second ed. Chalcombe Publications, Marlow, United Kingdom.

Hall, M.H. & Kephart, K.D., 1991. Management of spring-planted pea and triticale mixtures for forage production. Journal of Production Agriculture 4: 213-218.

Kristensen, V.F., 1992. The production and feeding of whole-crop cereals and legumes in Denmark. In: Stark, B.A. & Wilkinson, J.M. (Eds.), Whole-Crop Cereals, 2nd edititon. Chalcombe Publications, Kingston, Kent, United Kingdom. pp: 21–37.

Nagel, S.A. & Broderick, G.A., 1992. Effect of formic acid or formaldehyde treatment of alfalfa silage on nutrient utilization by dairy cows. Journal of dairy science. 75:140–154.

Maroto, J., 1992. El cultivo de las leguminosas hortícolas. En: Cubero, J. & Moreno, M. (eds.) Leguminosas de grano. Ediciones Mundi – Prensa. Madrid, España. pp: 95-121.

Khorasani, G.R.; Okine, E.K.; Kennelly, J.J. & Helm, J.H. 1993. Effect of whole crop cereal grain silage substituted for alfalfa silage on performance of lactating dairy cows. Journal Dairy Science 76:3536-3546.

Parga, M.J. & Torres, B.A., 1993. Cultivos forrajeros para sistemas lecheros. En: Lanuza, F. & Bortolameolli, G. (ed.). II Seminario: Aspectos técnicos y perspectivas de producción de leche. Estación experimental Remehue. INIA. Serie Remehue N°33. Osorno, Chile. pp: 49-78.

Royo, C.; Montesinos, E.; Molina-Cano, J.L. & Serra, J., 1993. Triticale and other small grain cereals for forage and grain in Mediterranean conditions. Grass Forage Science 48(1):11-17.

Sarrantonio, M. 1994. Northeast Cover Crop Handbook. Soil Health Series. Rodale Institute, Kutztown, Pensylvania, Estados Unidos. 118P.

Ellies, Sch.A., 1994. Limitantes físicas en la producción de forraje. En: Latrille.L.L. (ed.) Producción animal. Instituto de producción animal. Facultad de ciencias agrarias. Universidad Austral de Chile. Serie B-18. Action gráfica S.A. Valdivia, Chile. pp: 23-38.

Ellies, Sch.A., 1994. Limitantes físicas en la producción de forraje. En: Latrille.L.L. (ed.) Producción animal. Instituto de producción animal. Facultad de ciencias agrarias. Universidad Austral de Chile. Serie B-18. Action gráfica S.A. Valdivia, Chile. pp: 23-38.

Hargreaves, B.A., 1994. Uso de cereales de grano pequeño como planta completa en producción animal. Instituto de producción animal. Facultad de ciencias agrarias. Universidad Austral de Chile. Serie B-18. Valdivia, Chile. pp: 1-22.

Gowers, S. & Armstrong, S.D., 1994. A comparison of the yield and utilisation of six kale cultivars. New Zealand Journal of Agricultural Research. 37: 481-485.

Santini, B.M., 1995. Productividad y calidad de la mezcla Pisum sativum/Avena sativa en asociación con Lolium perenne o Lolium multiflorum en el secano de la IX Región. Tesis para optar al título de ingeniero agrónomo. Facultad de ciencias agropecuarias y forestales. Universidad de La Frontera. Temuco, Chile.

Parodi, B.O. & Altamirano, S.S. 1995. El cultivo el maíz. Centro regional La Platina. Instituto de investigaciones agropecuarias. Santiago. Chile. 173p.

Vagnoni, D.B.; Broderick, G.A. & Muck, R.E., 1997. Preservation of protein in wilted lucerne using formic, sulphuric or trichloroacetic acid. Grass forage science. 52: 5–11.

Cantero, M.M., 1997. Efecto de la dosis de semilla de Pisum sativum L. en el establecimiento y producción de Trifolium pratense – Lolium multiflorum en el secano de la IX Región. Tesis para optar al título de ingeniero agrónomo. Facultad de ciencias agropecuarias y forestales. Universidad de La Frontera. Temuco, Chile. 131p.

Khorasani, G. R.; Jedel, P. E.; Helm, J. H. & Kennelly, J. J.1997. Influence of stage of maturity on yield components and chemical composition of cereal grain silages. Canadian veterinary journal 77(2):259-267.

Lange, W.; Brandenburg, W.A. & de Bock, T.S.M., 1999. Taxonomy and cultonomy of beet (Beta vulgaris L.). Botanical Journal of the Linnean Society 130(1): 81–96.

Romero, O.; Rojas, C.; Butendieck, N. & Hazard, S., 1999. Producción de materia seca y calidad nutritiva de tres especies de cereales: avena, cebada y triticale para ensilaje. Resúmenes de la XXIV reunión anual de la sociedad chilena de producción animal (Sochipa). 27-29 octubre. Temuco, Chile. pp: 49-50.

White, J.G.H.; Matthew, C. & Kemp, P.D., 1999. Suplementary feeding systems. In: White J. & Hodgson, J. (eds.) New Zealand pasture and crop science. Oxford university press. Auckland, New Zealand. pp: 175- 197.

Christensen, D.A. & Mustafa, A.F., 2000. The use of peas in dairy rations. Advanced dairy science and technology. 12: 293–302.

Rojas, G.C. & Catrileo, S.A., 2000. Evaluación de ensilaje de cebada en tres estados de corte en la engorda invernal de novillos. Agricultura técnica (Chile) 60(4): 370-378.

Mustafa, A.F.; Christensen, D.A. & McKinnon, J.J., 2000. Effects of pea, barley, and alfalfa silage on ruminal nutrient degradability and performance of dairy cows. Journal of Dairy Science, 83: 2859–2865.

Resende, P.A.P.; Soares, J.E. & Hudetz, M., 2001. Moddus, a plant growth regulator and management tool for sugarcane production in Brazil. International Sugar Journal 102(1225): 5-9.

Morra, M.J. &, Kirkegaard, J.A., 2002. Isothiocyanate release from soil-incorporated brassica tissues. Soil Biology and Biochemistry, 34: 1683–1690.

Elizalde, V.H.F. & Gallardo, C.M., 2003. Evaluación de ensilajes de avena y cebada en la ganancia de peso de vaquillas en crecimiento. Agricultura técnica (Chile). 63 (4): 380-386.

Catrileo, S.A.; Rojas G.C.; Matus, C.J., 2003. Evaluación de la producción y calidad de cebada sembrada sola y asociada a especies forrajeras para la producción de ensilaje. Agricultura técnica (Chile) 63(2): 135-145.

Rojas, G.C.; Catrileo, S.A.; Martínez, B.M & Calabi, F.F., 2004. Evaluación de la época de corte de triticale (x Triticosecale Wittmack) para ensilaje. Agricultura técnica (Chile) 64(1):34-40.

Elizalde, V.H.F. & Menéndez, V.A.M., 2004. Evaluación de ensilajes de cereales de grano pequeño, sobre la producción de leche de vacas overo colorado. Agro Sur 32(2): 54-59.

Malagoli, P.; Laine, P.; Rossato, L. & Ourry, A., 2005. Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest. I. Global N flows between vegetative and reproductive tissues in relation to leaf fall and their residual. N. Annals Botany, 95: 853–861.

Dumont, L.J.C.; Anrique, G.R. & Alomar, C. D. 2005. Efecto de dos sistemas de determinación de materia seca en la composición química y calidad del ensilaje directo de avena en diferentes estados fenológicos. Agricultura Técnica 65(4): 388-396.

Beratto, M.E., 2006. Cultivo de avena en Chile. Instituto de Investigaciones Agropecuarias. Centro Regional de Investigación INIA Carillanca. Imprenta Austral. Temuco, Chile. 297p.

Al-Shehbaz, L.A.; Beilstein M.A. & Kellogg, E.A., 2006. Systematics and phylogeny of the Brassicaceae (Cruciferae): An overview. Plant Systematics and Evolution, 259(2): 89-120.

Charlton, D. & Stewart, A., 2006. Pasture and forage plants for New Zealand. New Zealand grassland association. New Zealand grassland trust. Grassland research and practice series N°8. Third edition revised and expanded. Auckland, New Zealand. 128p.

Kleinschmit, D.H. & Kung Jr, L., 2006. A meta-analysis of the effects of Lactobacillus buchneri on the fermentation and aerobic stability of corn and grass and smallgrain silages. Journal Dairy Science. 89: 4005–4013

Matthiessen, J.N. & Kirkegaard, J.A., 2006. Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Critical Reviews in Plant Sciences, 25: 235–265.

Nadeau, E. 2007. Effects of plant species, stage of maturity and additive on the feeding value of whole-crop cereal silage. Journal of the Science of Food and Agriculture 87: 789–801.

Paine, S.J., 2007. Efecto de la época de cosecha en el rendimiento y calidad de cinco cultivares de cebada (Hordeum vulgare L.) para ensilaje. Tesis para optar al título de ingeniero agrónomo. Facultad de ciencias agropecuarias y forestales. Universidad de La Frontera. Temuco, Chile. 53p.

Robson, S., 2007. Prussic acid poisoning in livestock. NSW Department of Primary Industries. New South Wales. Australia. Primefact 417: 1-3.

Harker, K.N.; Clayton, G.W. & Blackshaw, R.E., 2008. Comparison of leafy and semi-leafless pea for integrated weed management. Weed Technology. 22: 124-131.

Saggar, S.; Tate, K.R.; Giltrap, D.L. & Singh, J., 2008. Soil-atmosphere exchange of nitrous oxide and methane in New Zealand terrestrial ecosystems and their mitigation options: a review. Plant Soil, 309: 25–42.

Mackay, A.D., 2008. Impacts of intensification of pastoral agriculture on soils: current and emerging challenges and implications for future land uses. New Zealand Veterinary Journal, 56: 281–288.

Snyder, A.J.; Johnson-Maynard, J.L. & Morra, M.J., 2010. Nitrogen mineralization in soil incubated with 15N-labeled Brassicaceae seed meals. Applied Soil Ecology, 46: 73–80.

Lanuza, F., 2011. Suplementos Alimenticios. En: Pulido, R.; Parga, J.; Lanuza, F. & Balocchi, O. (eds.). Suplementación de vacas lecheras a pastoreo. Consorcio Tecnológico de la Leche S.A. Osorno, Chile. pp. 21-48.

Carrasco, N.; Zamora, M. & Merlin, A., 2011. Manual de sorgo. Publicaciones regionales. Instituto Nacional de Tecnología Agropecuaria (INTA). Centro Regional Buenos Aires Sur. Ministerio de Asuntos Agrarios. Buenos Aires, Argentina. 110 p.

Gibbs, S.J. 2011. Fodder beet for wintering cows. In: Proceedings of the annual conference of the south island dairy event, june, Lincoln, New Zealand. pp. 230-238

Berenji, J.; Dahlberg, J.; Sikora, V. & Latković, D. 2011. Origin, history, morphology, production, improvement, and utilization of broomcorn [Sorghum bicolor (L.) Moench] in Serbia. Economic Botany, 65(2): 190–208.

Willcox, G. & Stordeur, D. 2012. Large-scale cereal processing before domestication during the tenth millennium cal BC in northern Syria. Antiquity 86: 99–114.

Pardo de Santayana, M; Morales R.; Aceituno, L & Molina, M. 2014. Inventario español de los conocimientos tradicionales relativos a la biodiversidad agrícola. Ministerio de agricultura, alimentación y medio ambiente secretaría general técnica centro de publicaciones. Impresión Monterrein. Madrid, España. 413p.

Blum, A., 2014. The abiotic stress response and adaptation of triticale—A review. Cereal Research Communications 42(3): 359–375.

Huyghe, Ch.; De Vliegher, A, van Gils, B. & Peeters, A. 2014. Grassland and herbivore production in Europe and effect of common policies. Editions Quae. Versailles, France. 287p.

IANSA S.A., 2014. Manual de cultivo de remolacha. Normas y prácticas para la alta producción de remolacha azucarera en Chile. Impresiones QuadGraphics. San Carlos, Chile. 147p.

Carevic, R.A., 2017. Las culturas originarias y el maíz en el desierto chileno como fuentes de un desarrollo local y agroecológico. Sustentabilidad 8(16): 84 – 95.

Adhikari, L.; Mohseni-Moghadam, M. & Missaoui, A. 2018. Allelopathic effects of cereal rye on weed suppression and forage yield in alfalfa. American Journal of Plant Sciences 9: 685-700.

Stépanoff, Ch. & Vigne J.D. 2018. Hybrid communities. Biosocial approaches to domestication and other trans-species relationships. Routledge, Taylor & Francis group. 1st Edition. London, United Kingdom. 306p.

Hegi, G., 1986. Illustrierte Flora von Mitteleuropa. 3a ed.. In: Conert, U. H.J.; Schultz-Motel, H.W. & Wagenitz, G. Tomo IV, Angiospermae - Dicotyledones. Parte 1. Parey, Berlin, Hamburgo. Alemania. 320p.

Temas relacionados:
Autores:
Rolando Demanet
Universidad de la Frontera - Chile
Recomendar
Comentar
Compartir
Eduardo Espinoza
12 de octubre de 2022
hace varias décadas esta planta apareció en el altiplano de mi país, se convirtió en una plaga. Nadie pudo demostrarlo pero se teorizó que ingresó a través de semillas de trigo y cebada que se cultivaba tradicionalmente. Actualmente el trigo y cebada como cultivo comercial desaparecieron. Y esta planta que aquí se le conoce como "nabo", se descubrió su utilidad forrajera para rumiantes y también cerdos. Paradójicamente ahora muy apetecida y apreciada.
Recomendar
Responder
M.C. Fernando R. Feuchter A.
Universidad Autónoma Chapingo
6 de octubre de 2022
La diversidad de especies forrajeras para diferentes estaciones del año o la asociación de varias especies para establecer una pradera son alternativas de alcanzar la pradera de verde continuo todo el año.
Recomendar
Responder
Jairo Urdaneta
29 de enero de 2023
Segun el estudio realizado constituye un forraje adecuado para su utilizacion en el tropico alto
Recomendar
Responder
Profile picture
¿Quieres comentar sobre otro tema? Crea una nueva publicación para dialogar con expertos de la comunidad.
Súmate a Engormix y forma parte de la red social agropecuaria más grande del mundo.