1. Devreese, M.; De Backer, P.; Croubels, S. Overview of the most important mycotoxins for the pig and poultry husbandry. Vlaams Diergeneeskd. Tijdschr. 2013, 82, 171–180. [Ref. cruzada]
2. Weaver, A.C.; Weaver, D.M.; Adams, N.; Yiannikouris, A. Co-Occurrence of 35 Mycotoxins: A Seven-Year Survey of Corn Grain and Corn Silage in the United States. Toxins 2021, 13, 516. [Ref. cruzada] [PubMed]
3. Moretti, A.; Pascale, M.; Logrieco, A.F. Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci. Technol. 2019 84, 38–40. [Ref. cruzada]
4. Pierron, A.; Alassane-Kpembi, I.; Oswald, I.P. Impact of mycotoxin on immune response and consequences for pig health. Anim. Nutr. 2016, 2, 63–68. [Ref. cruzada]
5. Recomendación (UE) 2016/1319 de la Comisión de 29 de julio de 2016 que modifica la Recomendación 2006/576/CE por lo que se refiere al deoxinivalenol, la zearalenona y la ocratoxina A en los alimentos para animales de compañía (Texto pertinente a efectos del EEE). Diario Oficial de la Unión Europea 2016, 208, 58–59. Disponible en línea: http://data.europa.eu/eli/reco/2016/1319/oj (consultado el 1 de julio de 2021).
6. Reglamento (UE) Nº 574/2011 de la Comisión de 16 de junio de 2011 por el que se modifica el anexo 1 de la Directiva 2002/32/CE del Parlamento Europeo y del Consejo con respecto a los contenidos máximos de nitritos, melamina, Ambrosia spp., y a la transferencia de determinados coccidiostáticos e histomonóstatos, y por la que se consolidan sus anexos I y II (Texto pertinente a efectos del EEE). Diario Oficial de la Unión Europea 2011, 159, 7–24. Disponible en línea: http://data.europa.eu/eli/reg/2011/574/oj (consultado el 10 de noviembre de 2021).
7. Recomendación de la Comisión (UE) de 27 de marzo de 2013 sobre la presencia de toxinas T-2 y HT-2 en los cereales y los productos a base de cereales (Texto pertinente a efectos del EEE). Diario Oficial de la Unión Europea 2013, 91, 12–15. Disponible en línea: http://data.europa.eu/eli/reco/2013/165/oj (consultado el 10 de noviembre de 2021).
8. Moon, S.-H.; Koh, S.-E.; Oh, Y.; Cho, H.-S. Exposure to low concentrations of mycotoxins triggers unique responses from the pig gut microbiome. Korean J. Vet. Serv. 2020, 43, 39–44. [Ref. cruzada]
9. Oswald, I.P.; Desautels, C.; Ladditte, J.; Fournout, S.; Peres, S.Y.; Odin, M.; Le Bars, P.; Le Bars, J.; Fairbrother, J.M. Mycotoxin fumonisin B1 increases intestinal colonization by pathogenic Escherichia coli in pigs. Appl. Environ. Microbiol. 2003, 69, 5870. [Ref. cruzada]
10. Jia, R.; Liu, W.; Zhao, L.; Cao, L.; Shen, Z. Low doses of individual and combined deoxynivalenol and zearalenone in naturally moldy diets impair intestinal functions via inducing inflammation and disrupting epithelial barrier in the intestine of piglets. Toxicol. Lett. 2020, 333, 159–169. [Ref. cruzada]
11. Weaver, A.C.; Adams, N.; Yiannikouris, A. Use of technology to assess and monitor multimycotoxin and emerging mycotoxin challenges in feedstuffs. Appl. Anim. Sci. 2020, 36, 19–25. [Ref. cruzada]
12. Čolović, R.; Puvača, N.; Cheli, F.; Avantaggiato, G.; Greco, D.; Duragić, O.; Kos, J.; Pinotti, L. Decontamination of mycotoxin contaminated feedstuffs and compound feed. Toxins 2019, 11, 617. [Ref. cruzada] [PubMed]
13. Weaver, A.C.; King, W.D.; Verax, M.; Fox, U.; Kudupoje, M.B.; Mathis, G.; Lumpkins, B.; Yiannikouris, A. Impact of Chronic Levels of Naturally Multi-Contaminated Feed with Fusarium Mycotoxins on Broiler Chickens and Evaluation of the Mitigation Properties of Different Titers of Yeast Cell Wall Extract. Toxins 2020, 12, 636. [Ref. cruzada] [PubMed]
14. Kolawole, O.; Meneely, J.; Greer, B.; Chevallier, O.; Jones, D.S.; Connolly, L.; Elliott, C. Comparative in vitro assessment of a range of commercial feed additives with multiple mycotoxin binding claims. Toxins 2019, 11, 659. [Ref. cruzada]
15. Yiannikouris, A.; Apajalahti, J.; Kettunen, H.; Ojanperä, S.; Bell, A.N.W.; Keegan, J.D.; Moran, C.A. Efficient aflatoxin B1 sequestration by yeast cell wall extract and hydrated sodium calcium aluminosilicate evaluated using a multimodal in-vitro andex-vivo methodology. Toxins 2021, 13, 24. [Ref. cruzada]
16. Holanda, D.M.; Kim, S.W. Mycotoxin occurrence, toxicity, and detoxifying agents in pig production with an emphasis on deoxynivalenol. Toxins 2021, 13, 171. [Ref. cruzada]
17. Lean, I.J.; Rabiee, A.R.; Duffield, T.F.; Dohoo, I.R. Invited review: Use of meta-analysis in animal health and reproduction: Methods and applications. J. Dairy Sci. 2009, 92, 3545–3565. [Ref. cruzada]
18. Harris, R.J.; Bradburn, M.J.; Deeks, J.J.; Harbord, R.M.; Altman, D.G.; Sterne, J.A.C. Metan: Fixed- and random-effects meta- analysis. Stata J. 2008, 8, 3–28. [Ref. cruzada]
19. Bornstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. A basic introduction to fixed-effect and random-effect models for meta-analysis. Res. Synth. Methods 2010, 1, 97–111. [Ref. cruzada]
20. Imrey, P.B. Limitations of meta-analyses of studies with high heterogeneity. JAMA Netw.. Open 2020, 3, e1919325. [Ref. cruzada]
21. Battacone, G.; Carboni, G.; Nicolussi, P.; Ligios, C.; Pulina, G. Use of a glucomannan polymer to reduce the effects of mycotoxin- contaminated diets in finishing pigs. Ital. J.Anim. Sci. 2007, 6 (Suplemento 1), 673–675. [Ref. cruzada]
22. Bobin, A. Use of Mycotoxin Detoxifying Agent for Improving the Health of Fattening Piglets. Tesis de master, lituano Academia de Veterinaria de la Universidad de Ciencias de la Salud de Lituania, Kaunas, Lituania, 2018.
23. Hackl, W.; Spitschack, K.; Zwierz, P.; Spring, P. Effect of yeast cell wall-based toxin adsorbents on performance and health of gilts fed diets containing zearalenone and DON. En Proceedings of the Alltech’s 19th Annual Symposium Biotechnology in the Feed and Food Industries, Lexington, KY, EE. UU., 11–14 de mayo de 2003.
24. Holanda, D.M.; Yiannikouris, A.; Kim, S.W. Investigation of the efficacy of a postbiotic yeast cell wall-based blend on newly weaned pigs under a dietary challenge of multiple mycotoxins with emphasis on deoxynivalenol. Toxins 2020, 12, 504. [Ref. cruzada] [PubMed]
25. Morán, C.A.; Yiannikouris, A.; Keegan, J.D.; Vienola, K.; Apajalahti, J. The Effect of Aflatoxin B1 and Zearalenone on Growing Pigs and the Use of Mycosorb A+. Manuscrito no publicado. 2019.
26. Yiannikouris, A.; Vartiainen, R.; Koivunen, E.; Raatikainen, K.; Apajalahati, J.; Moran, C.A. Effect of Deoxynivalenol and Zearalenone on the Performance of Growing Pigs and the use of Mycosorb A+. Manuscrito no publicado. 2022.
27. Mahan, D. Evaluation of three commercial mycotoxin inhibitors added to vomitoxin (DON) contaminated corn diets for weanling pigs: A report from the NCCC-042, S-1044, and NCERA-89 regional committees on swine nutrition and management. In Proceedings of the Midwest Swine Nutrition Conference, Indianápolis, IN, EE. UU., 9 de septiembre de 2010.
28. Moran, C.A.; Yiannikouris, A.; Keegan, JD; Vienola, K.; Apajalahti, J. The effect of Mycosorb A+ and Zearalenone on Growing Pigs. Manuscrito no publicado. 2017.
29. Swamy, H.V.L.N.; Skinner, S.; Groenewegen, P. Economics of Mycosorb® inclusion in nursery pig diets contaminated with low levels of vomitoxin. In Proceedings of the Alltech’s 26th International Animal Health and Nutrition Symposium, Lexington, KY, EE. UU., 16–19 de mayo de 2010.
30. Verbrugghe, E.; Croubels, S.; Vandenbroucke, V.; Goossens, J.; De Backer, P.; Eeckhout, M.; De Saeger, S.; Boyen, F.; Leyman, B.; Van Parys, A.; et al. A modified glucomannan mycotoxin-adsorbing agent counteracts the reduced weight gain and diminishes cecal colonization of Salmonella typhimurium in T-2 toxin exposed pigs. Res. Vet. Sci. 2012, 92, 1139–1141. [Ref. cruzada] [PubMed]
31. Danicke, S.; Goyarts, T.; Valenta, H. On the specific and unspecific effects of a polymeric glucomannan mycotoxin adsorbent on piglets when fed with uncontaminated or with Fusarium toxins contaminated diets. Arch. Anim. Nutr. 2007, 61, 266–275. [Ref. cruzada]
32. Moran, C.A.; Yiannikouris, A.; Keegan, J.D.; Vienola, K.; Apajalahti, J. The effect of Mycosorb A+ on the uptake of zearalenone from the digestive tract of growing pigs. In Proceedings of the 10th Conference of The World Mycotoxin Forum, Ámsterdam, Países Bajos Países Bajos, 12–14 de marzo de 2018.
33. Kim, S.W.; Holanda, D.M.; Gao, X.; Park, I.; Yiannikouris, A. Efficacy of a yeast cell wall extract to mitigate the effect of naturally co-occurring mycotoxins contaminating feed ingredients fed to young pigs: Impact on gut health, microbiome and growth. Toxins 2019, 11, 633. [Ref. cruzada]
34. Kong, C.; Park, C.S.; Kim, B.G. Evaluation of a mycotoxin adsorbent in swine diets containing barley naturally contaminated with Fusarium mycotoxins. Rev. Colomb. Cienc. Pecu. 2016, 29, 169–177. [Ref. cruzada]
35. Nešić, K.; Pupavac, S.; Sinovec, Z.J. Efficacy of different adsorbents in alleviating zearalenone effects on performance of pigs. Zb. Matice Srp. Prir. Nauk. 2005, 108, 173–179. [Ref. cruzada]
36. Patience, J.F.; Myers, A.J.; Ensley, S.; Jacobs, B.M.; Madson, D. Evaluation of two mycotoxin mitigation strategies in grow finish swine diets containing corn-dried distillers grains with soluble naturally contaminated with deoxynivalenol. J. Anim. Sci. 2014, 92, 620–626. [Ref. cruzada]
37. Su, J.; Chen, D.; Yu, B.; Wang, X. Effects of feeding diets naturally contaminated with Fusarium mycotoxins on utilization of nutrients in weaning piglets and the protective effects of the mycotoxin adsorbent Mycosorb®. In Proceedings of the Alltech’s 22nd Annual Symposium Nutritional Biotechnology in the Feed and Food Industries, Lexington, KY, EE. UU., 24–26 de abril de 2006.
38. Sun, Y.W.; Park, I.; Guo, J.Y.; Weaver, A.C.; Kim, S.W. Impacts of low level aflatoxins in feed and the use of modified yeast cell wall extract on growth and health of nursery pigs. Anim. Nutr. 2015, 1, 177–183. [Ref. cruzada]
39. Swamy, H.V.L.N.; Smith, T.K.; MacDonald, E.J.; Boermans, H.J.; Squires, E.J. Effects of feeding a blend of grains naturally contaminated with Fusarium mycotoxins on swine performance, brain regional neurochemistry, and serum chemistry and the efficacy of a polymeric glucomannan mycotoxin adsorbent. J. Anim. Sci. 2002, 80, 3257–3267. [Ref. cruzada]
40. Swamy, H.V.L.N.; Smith, T.K.; MacDonald, E.J.; Karrow, N.A.; Woodward, B.; Boermans, H.J. Effects of feeding a blend of grains naturally contaminated with Fusarium mycotoxins on growth and immunological measurements of starter pigs, and the efficacy of a polymeric glucomannan mycotoxin adsorbent. J. Anim. Sci. 2003, 81, 2792–2803. [Ref. cruzada] [PubMed]
41. Van Le Thanh, B.; Lessard, M.; Chorfi, Y.; Guay, F. The efficacy of anti-mycotoxin feed additives in preventing the adverse effects of wheat naturally contaminated with Fusarium mycotoxins on performance, intestinal barrier function and nutrient digestibility and retention in weanling pigs. Can. J. Anim Sci. 2015, 95, 197–209. [Ref. cruzada]
42. Weaver, A.C.; See, M.T.; Kim, S.W. Protective effect of two yeast based feed additives on pigs chronically exposed to deoxynivalenol and zearalenone. Toxins 2014, 6, 3336–3353. [Ref. cruzada] [PubMed]
43. Yiannikouris, A.; Vartiainen, R.; Koivunen, E.; Raatikainen, K.; Apajalahati, J.; Moran, C.A. Effect of Mycosorb A+ on the Uptake and Deposition of Deoxynivalenol and Zearalenone in Growing Pigs. In Proceedings of the 14th Conference of The World Mycotoxin Forum, Parma, Italia, 16–18 de mayo de 2022.
44. Andretta, I.; Kipper, M.; Lehnen, C.R.; Hauschild, L.; Vale, M.M.; Lovatto, P.A. Meta-analytical study of productive and nutritional interactions of mycotoxins in growing pigs. Animal 2012, 6, 1476–1482. [Ref. cruzada] [PubMed]
45. Kipper, M.; Andretta, I.; Ribeiro, A.M.L.; da Silva Pires, P.G.; Franceschina, C.S.; Cardinal, K.M.; de Oliveira Moraes, P.; Schroeder, B. Assessing the implications of mycotoxins on productive efficiency of broilers and growing pigs. Sci. Agric. 2020, 77, e20180236. [Ref. cruzada]
46. Gerez, J.R.; Pinton, P.; Callu, P.; Grosjean, F.; Oswald, I.P.; Bracarense, A.P.F. Deoxynivalenol alone or in combination with nivalenol and zearalenone induce systemic histological changes in pigs. Exp. Toxicol. Pathol. 2015, 67, 89–98. [Ref. cruzada]
47. Alassane-Kpembi, I.; Puel, O.; Oswald, I.P. Toxicological interactions between the mycotoxins deoxynivalenol, nivalenol and their acetylated derivatives in intestinal epithelial cells. Arch. Toxicol. 2015, 89, 1337–1346. [Ref. cruzada]
48. Alassane-Kpembi, I.; Puel, O.; Pinton, P.; Cossalter, A.M.; Chou, T.C.; Oswald, I.P. Co-exposure to low doses of the food contaminants deoxynivalenol and nivalenol has a synergistic inflammatory effect on intestinal explants. Arch. Toxicol. 2017, 91, 2677–2687. [Ref. cruzada]
49. Alizadeh, A.; Braber, S.; Akbari, P.; Kraneveld, A.D.; Garssen, J.; Fink-Gremmels, J. Deoxynivalenol and its modified forms: Are there major differences? Toxins 2016, 8, 334. [Ref. cruzada]
50. Gratz, S.W.; Currie, V.; Richardson, A.J.; Duncan, G.; Holtrop, G.; Farquharson, F.; Louis, P.; Pinton, P.; Oswald, I.P.; Björkroth, J. Porcine small and large intestinal microbiota rapidly hydrolyze the masked mycotoxin deoxynivalenol-3 glucoside and release deoxynivalenol in spiked batch cultures in vitro. Appl. Environ. Microbiol. 2018, 84, e02106-17. [Ref. cruzada]
51. Broekaert, N.; Devreese, M.; Van Bergen, T.; Schauvliege, S.; De Boevre, M.; De Saeger, S.; Vanhaecke, L.; Berthiller, F.; Michlmayr, H.; Malachová, A.; et al. In vivo contribution of deoxynivalenol-3-β-d-glucoside to deoxynivalenol exposure in broiler chickens and pigs: Oral bioavailability, hydrolysis and toxicokinetics. Arch. Toxicol. 2016, 91, 699–712. [Ref. cruzada]
52. Kolf-Clauw, M.; Sassahara, M.; Lucioli, J.; Rubira-Gerez, J.; Alassane-Kpembi, I.; Lyazhri, F.; Borin, C.; Oswald, I.P. The emerging mycotoxin, enniatin B1, down-modulates the gastrointestinal toxicity of T-2 toxin in vitro on intestinal epithelial cells and ex vivo on intestinal explants. Arch. Toxicol. 2013, 87, 2233–2241. [Ref. cruzada] [PubMed]
53. Gruber-Dorninger, C.; Novak, B.; Nagl, V.; Berthiller, F. Emerging Mycotoxins: Beyond Traditionally Determined Food Contaminants. J. Agric. Food Chem.. 2017, 65, 7052–7070. [Ref. cruzada] [PubMed]
54. Fraeyman, S.; Croubels, S.; Devreese, M.; Antonissen, G. Emerging Fusarium and Alternaria Mycotoxins: Occurrence, Toxicity and Toxicokinetics. Toxins 2017, 9, 228. [Ref. cruzada]
55. Nešić, K.; Habschied, K.; Mastanjevic´, K. Possibilities for the Biological Control of Mycotoxins in Food and Feed. Toxins 2021, 13, 198. [Ref. cruzada] [PubMed]
56. Zhu, Y.; Hassan, Y.; Lepp, D.; Shao, S.; Zhou, T.; Zhu, Y.; Hassan, Y.I.; Lepp, D.; Shao, S.; Zhou, T. Strategies and methodologies for developing microbial detoxification systems to mitigate mycotoxins. Toxins 2017, 9, 130. [Ref. cruzada] [PubMed]
57. Papp, L.A.; Horváth, E.; Peles, F.; Pócsi, I.; Miklós, I. Insight into yeast-mycotoxin relations. Agriculture 2021, 11, 1291. [Ref. cruzada]
58. Weaver, A.C.; Weaver, D.M.; Yiannikouris, A.; Adams, N. Meta-analysis of the effects of mycotoxins and yeast cell wall extract supplementation on the performance, livability, and environmental sustainability of broiler production. Poult. Sci. 2022, 101, 102043. [Ref. cruzada]
59. Xu, R.; Kiarie, E.G.; Yiannikouris, A.; Sun, L.; Karroe, N.A. Nutritional impact of mycotoxins in food animal production and strategies for mitigation. J. Anim. Sci. Biotechnol. 2022, 13, 69. [Ref. cruzada]
60. Marin, D.E.; Taranu, I.; Bunaciu, R.P.; Pascale, F.; Tudor, D.S.; Avram, N.; Sarca, M.; Cureu, I.; Criste, R.D.; Suta, V.; et al. Changes in performance, blood parameters, humoral and cellular immune responses in weanling piglets exposed to low doses of aflatoxin. J. Anim. Sci. 2002, 80, 1250–1257. [Ref. cruzada]
61. Becker, C.; Reiter, M.; Pfaffl, M.W.; Meyer, H.H.; Bauer, J.; Meyer, K.H. Expression of immune relevant genes in pigs under the influence of low doses of deoxynivalenol (DON). Mycotoxin Res. 2011, 27, 287–293. [Ref. cruzada] [PubMed]
62. House, J.D.; Abramson, D.; Crow, G.H.; Nyachoti, C.M. Feed intake, growth and carcass parameters of swine consuming diets containing low levels of deoxynivalenol from naturally contaminated barley. Can. J. Anim. Sci. 2002, 82, 559–565. [Ref. cruzada]
63. Muñoz-Solano, B.; González-Peñas, E. Co-Occurrence of Mycotoxins in Feed for Cattle, Pigs, Poultry, and Sheep in Navarra, a Region of Northern Spain. Toxins 2023, 15, 172. [Ref. cruzada] [PubMed]
64. Streit, E.; Schatzmayr, G.; Tassis, P.; Tzika, E.; Marin, D.; Taranu, I.; Tabuc, C.; Nicolau, A.; Aprodu, I.; Puel, O.; et al. Current situation of mycotoxin contamination and co-occurrence in animal feed-focus on Europe. Toxins 2012, 4, 788–809. [Ref. cruzada]
65. Santos Pereira, C.C.; Cunha, S.; Fernandes, J.O. Prevalent Mycotoxins in Animal Feed: Occurrence and Analytical Methods. Toxins 2019, 11, 290. [Ref. cruzada]
66. Pitt, J.I. Economics of mycotoxins: Evaluating costs to society and cost-effectiveness of interventions. IARC Sci. Publ. 2012, 158, 119–129.
67. Magnoli, A.P.; Poloni, V.L.; Cavaglieri, L. Impact of mycotoxin contamination in the animal feed industry. Curr. Opin. Food Sci. 2019, 29, 99–108. [Ref. cruzada]
68. Marin, D.E.; Braicu, C.; Gras, M.A.; Pistol, G.C.; Petric, R.C.; Neagoe, I.B.; Palade, M.; Taranu, I. Low level of ochratoxin A affects genome-wide expression of kidney of pig. Toxicon 2017, 136, 67–77. [Ref. cruzada]
69. Liu, D.; Ge, L.; Wang, Q.; Su, J.; Chen, X.; Wang, C. Low-level contamination of deoxynivalenol: A threat from environmental toxins to porcine epidemic diarrhea virus infection. Environ. Int. 2020, 143, 105949. [Ref. cruzada]
70. Maruo, V.M.; Bracarense, A.P.; Metayer, J.-P.; Vilarino, M.; Oswald, I.P.; Pinton, P. Ergot alkaloids at doses close to EU regulatory limits induce alterations of the liver and intestine. Toxins 2018, 10, 183. [Ref. cruzada]
71. Mace, O.J.; Marshall, F. Digestive physiology of the pig symposium: Gut chemosensing and the regulation of nutrient absorption and energy supply. J. Anim. Sci. 2013, 91, 1932–1945. [Ref. cruzada] [PubMed]
72. Sauvé, B.; Chorfi, Y.; Montminy, M.-PL; Guay, F. Vitamin D supplementation impacts calcium and phosphorus metabolism in piglets fed diet contaminated with deoxynivalenol and challenges with lipopolysaccharides. Toxins 2023, 15, 394. [Ref. cruzada] [PubMed]
73. Verbrugghe, E.; Vandenbroucke, V.; Dhaenens, M.; Shearer, N.; Goossens, J.; De Saeger, S.; Eeckhout, M.; D'Herde, K.; Thompson, A.; Deforce, D.; et al. T-2 toxin induced Salmonella typhimurium intoxication results in decreased Salmonella numbers in the cecum T-2 toxin induced Salmonella typhimurium intoxication results in decreased Salmonella numbers in the cecum Vet. Res. 2012, 43, 22. [Ref. cruzada] [PubMed]
74. Van Limbergen, T.; Devreese, M.; Croubels, S.; Broekaert, N.; Michiels, A.; De Saeger, S.; Maes, D. Role of mycotoxins in herds with and without problems with tail necrosis in neonatal pigs. Vet. Rec. 2017, 181, 539. [Ref. cruzada] [PubMed]
75. Swamy, H.V.L.N.; Smith, T.K.; MacDonald, E.J. Effects of feeding blends of grains naturally contaminated with Fusarium mycotoxins on brain regional neurochemistry of starter pigs and broiler chickens. J. Anim. Sci. 2004, 82, 2131–2139. [Ref. cruzada]
76. Van Le Thanh, B.; Lessard, M.; Chorfi, Y.; Guay, F. SHORT COMMUNICATION: Antioxidant capacity in the intestinal mucosa of weanling piglets fed diets containing Fusarium mycotoxins and the efficacy of commercial supplements sold as detoxifiers. Can. J. Anim. Sci. 2015, 95, 569–575. [Ref. cruzada]
77. Wang, T.; Yang, J.; Lin, G.; Li, M.; Zhu, R.; Yiannikouris, A.; Wang, R.; Zhang, Y.; Mai, K. Evaluation of the mitigation efficacy of a yeast cell wall extract toward deoxynivalenol contaminated diet fed to turbot (Scophthalmus maximum). Ecotoxicol. Environ. Saf.. 2021, 216, 112221. [Ref. cruzada]
78. Kollar, R.; Reinhold, B.B.; Petrakova, E.; Yeh, H.J.C.; Ashwell, G.; Drgonova, J.; Kapteyn, J.C.; Klis, F.M.; Cabib, E. Architecture of the yeast cell wall. B(1-6)-gluten interconnects mannoprotein, β(1-3)-glucan, and chitin. J. Biol. Chem. 1997, 272, 17762–17775. [Ref. cruzada]
79. Klis, F.M.; Mol, P.; Hellingwerf, K.; Brul, S.Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 2002, 26, 239–256. [Ref. cruzada]
80. Sterne, J.A.C.; Sutton, A.J.; Ioannidis, J.P.A.; Terrin, N.; Jones, D.R.; Lau, J.; Carpenter, J.; Rucker, G.; Harbord, R.M.; Schmid, C.H.; et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomized controlled trials. BMJ 2011, 343, d4002. [Ref. cruzada]
81. Duval, S.; Tweedie, R.Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000, 56, 455–463. [Ref. cruzada] [PubMed]
82. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Ref. cruzada] [PubMed]
83. Asociación Nacional de Cereales y Piensos de Estados Unidos. FDA mycotoxin regulatory guidance. En A Guide for Grain Elevators, Feed Manufacturers, Grain Processors and Exporters; Asociación Nacional de Cereales y Piensos: Arlington, VA, EE. UU., 2019.
84. Thompson, S.G.; Turner, R.M.; Warn, D.E. Multilevel models for meta-analysis, and their application to absolute risk differences. Stat. Methods Med. Res. 2001, 10, 375–392. [Ref. cruzada] [PubMed]
85. Gelman, A.; Hill, J. Data Analysis Using Regression and Hierarchical/Multilevel Models; Cambridge University Press: Nueva York, NY, EE. UU., 2007.
86. Viechtbauer, W. Bias and efficiency of meta-analytic variance estimators in the random-effects model. J. Educ. Behav. Stat. 2005, 30, 261–293. [Ref. cruzada]
87. Rodney, R.M.; Celi, P.; Scott, W.; Breinhild, K.; Lean, I.J. Effects of dietary fat on fertility of dairy cattle: meta-regression. J. Dairy Sci. 2015, 98, 5601–5620. [Ref. cruzada] [PubMed]
88. Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Ref. cruzada]
89. Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Ref. cruzada]
90. Von Hippel, P.T. The heterogeneity statistic I2 can be biased in small meta-analyses. BMC Med. Res. Methodol. 2015, 15, 35. [Ref. cruzada]
91. Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Ref. cruzada]
92. Harrer, M.; Cuijpers, P.; Furukawa, T.A.; Ebert, D.D. Doing Meta-Analysis with R: A Hands-On Guide; Chapmann & Hall: Londres, Reino Unido; CRC Press: Boca Ratón, FL, EE. UU., 2021; ISBN 978-0-367-61007-4.
93. R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Viena, Austria, 2023.
94. RStudio Team. RStudio: Integrated Development for R, version 1.4.1106; RStudio, PBC: Boston, MA, EE. UU., 2023; disponible en línea: http://www.rstudio.com/ (consultado el 30 de abril de 2023).
95. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 36, 1–48. [Ref. cruzada]