Un proyecto para demostrar la eficacia de la inmunidad cruzada con una vacuna viva y 3 estrategias para uso en industria avicola soporte a solución.
La unica manera de reparar un sistema mal diseñado es volver a construirlo, si es posible.
Donella Meadows (2015)
Pensar en sistemas, Un manual de iniciacion
Cepa de Salmonella Dilución de IL-6(mg/mL) |
S typhimurium F98 77.18 ± 3.3 S dublin 2229 77.37 ± 3.9 S enteritidis 125589 91.14 ± 4.4 Escherichia Coli K12 20.82 ± 0.65 Aves no desafiadas 17.31 ± 0.53 S gallinarum 9 9.02 ± 0.48 |
[1] Barrow, P.A., 2000. The paratyphoid salmonellae. Rev. Sci. Tech. 19, 351–375.
[2] Shivaprasad, H.L., 2000. Fowl typhoid and pullorum disease. Rev. Sci. Tech. 19, 405–424 .
[3] Jones, M.A., Wigley, P., Page, K.L., Hulme, S.D., Barrow, P.A., 2001. Salmonella entérica serovar Gallinarum requires the Salmonella pathogeni- city island 2 type III secretion system but not the Salmonella pathogenicity island 1 type III secretion system for virulence in chickens. Infect. Immun. 69, 5471–5476.
[4] Parmar, D., Davies, R., 2007. Fowl typhoid in a small backyard laying flock. Vet. Rec. 160, 348.
[5] Chacón RD, Moura Q, Astolfi-Ferreira CS, De la Torre DI, Guerrero LMC, Martínez LAR, Corzo AN, Morales López NH, Ramírez M, Lincopan N, Piantino Ferreira AJ. 2019. Draft genome sequences of four Salmonella entérica subsp. entérica serovar Gallinarum strains isolated from layer breeder flocks in an outbreak of fowl typhoid in Colombia. Microbiol Resour Announc 8:e00122-19. https://doi.org/10.1128/MRA.00122-19.
[6] Wigley.P. 2014. Salmonella entérica in the chicken: how it has helped our understanding of immunology in a non-biomedical model species. doi: 10.3389/fimmu.2014.00482
[7] Smith, A.L., Beal, R., 2008. The avian enteric immune system in health and disease. In: Davison, F., Kaspers, B., Schat, K.A. (Eds.), Avian Immunol- ogy. Academic Press, London, pp. 243–271.
[8] Withanage, G.S., Wigley, P., Kaiser, P., Mastroeni, P., Brooks, H., Powers, C., Beal, R., Barrow, P., Maskell, D., McConnell, I., 2005. Cytokine and chemokine responses associated with clearance of a primary Salmonella enterica serovar Typhimurium infection in the chicken and in protective immunity to rechallenge. Infect. Immun. 73, 5173–5182.
[9] Henderson, S.C., Bounous, D.I., Lee, M.D., 1999. Early events in the pathogenesis of avian salmonellosis. Infect. Immun. 67, 3580–3586.
[10] Withanage, G.S., Kaiser, P., Wigley, P., Powers, C., Mastroeni, P., Brooks, H., Barrow, P., Smith, A., Maskell, D., McConnell, I., 2004. Rapid expres- sion of chemokines and proinflammatory cytokines in newly hatched chickens infected with Salmonella enterica serovar typhimurium. Infect. Immun. 72, 2152–2159.
[11] Chappell .,L, Kaiser .,P,Barrow., P, Jones.,M, Claire., P, Paul Wigley 2009.The immunobiology of avian systemic salmonellosis Veterinary Immunology and Immunopathology 128: 53–59 doi:10.1016/j.vetimm.2008.10.295.
[12] Kaiser, P., Rothwell, L., Galyov, E.E., Barrow, P.A., Burnside, J., Wigley, P., 2000. Differential cytokine expression in avian cells in response to invasion by Salmonella typhimurium. Salmonella enteritidis and Sal- monella gallinarum. Microbiology 146 (Pt 12), 3217–3226.
[13] Rojas, W., et al., 2023.Inmunologia de Rojas. Elementos constitutivos, barreras naturales, células, moléculas y sistemas enzimáticos de la inmunidad innata.19: 24-25
[14] Iqbal, M., Philbin, V.J., Withanage, G.S., Wigley, P., Beal, R.K., Goodchild, M.J., Barrow, P., McConnell, I., Maskell, D.J., Young, J., Bumstead, N., Boyd, Y., Smith, A.L., 2005. Identification and functional characteriza- tion of chicken toll-like receptor 5 reveals a fundamental role in the biology of infection with Salmonella enterica serovar typhimurium. Infect. Immun. 73, 2344–2350.
[15] Hansen-Wester, I., and Hensel, M. (2001). Salmonella pathogenicity islands encoding type III secretion systems. Microbes. Infect. 3, 549–559. doi: 10.1016/S1286-4579(01)01411-3
[16] Raffatellu, M., Wilson, R. P., Chessa, D., Andrews-Polymenis, H., Tran, Q. T., Lawhon, S., et al. (2005). SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype typhimurium invasion of epithelial cells. Infect. Immun. 73, 146–154. doi: 10.1128/IAI.73.1. 146-154.2005
[17] Kubori, T., Matsushima, Y., Nakamura, D., Uralil, J., Lara-Tejero, M., Sukhan, A., et al. (1998). Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605. doi: 10.1126/science.280.5363.602
[18] Mastroeni, P., Menager, N., 2003. Development of acquired immunity to Salmonella. J. Med. Microbiol. 52, 453–459.
[19] Lou L, Zhang P, Piao R and Wang Y (2019) Salmonella Pathogenicity Island 1 (SPI-1) and Its Complex Regulatory Network. Front. Cell. Infect. Microbiol. 9:270. doi: 10.3389/fcimb.2019.00270 .
[20] Barrow, P.A., 2000. The Paratyphoid salmonella. Rev. Sci. Tech. 19, 351–375.
[21] Hensel, M., 2000. Salmonella pathogenicity island 2. Mol. Microbiol. 36, 1015–1023.
[22] Cheminay, C., Mohlenbrink, A., Hensel, M., 2005. Intracellular Salmonella inhibit antigen presentation by dendritic cells. J. Immunol. 174, 2892–2899.
[23] Henssel. M., et al. 2000. Salmonella Pathogenicity Island 2 . Molecular Microbiology (2000) 36(5), 1015±1023.
[24] Jones.m., Wigle.w., Kerrel.l., Sott D. Hums., and Barrow .P.2000. Salmonella enterica Serovar Gallinarum Requires the Salmonella Pathogenicity Island 2 Type III Secretion System but Not the Salmonella Pathogenicity Island 1 Type III Secretion System for Virulence in Chickens Infection and Immunity p. 5471–5476 Vol. 69, doi: 10.1128/IAI.69.9.5471–5476.200.
[25] Vazquez-Torres, A., J. Jones-Carson, P. Mastroeni, H. Ischiropoulos, and F. C. Fang. 2000. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J. Exp. Med. 192:227–236.
[26] Wigley, P., 2004. Genetic resistance to Salmonella infection in domestic animals. Res. Vet. Sci. 76, 165–169.
[27] Wigley, P., Hulme, S.D., Bumstead, N., Barrow, P.A., 2002a. In vivo and in vitro studies of genetic resistance to systemic salmonellosis in the chicken encoded by the SAL1 locus. Microbes Infect. 4, 1111–1120.
[28] Wigley, P., Hulme, S., Rothwell, L., Bumstead, N., Kaiser, P., Barrow, P., 2006. Macrophages isolated from chickens genetically resistant or susceptible to systemic salmonellosis show magnitudinal and temporal differential expression of cytokines and chemokines following Salmonella enterica challenge. Infect. Immun. 74, 1425–1430.
[29] Genovese. K.J., Kogut.H., 1997. Resitence of salmonella enteriditis invasion organs in day old turkey and chikens by transformed cell T produce limphokimas. Avian disease 42:545-553
[30] Shivaprasad, H.L., 2000. Fowl typhoid and pullorum disease. Rev. Sci. Tech. 19, 405–424.
[31] Babu, U., Scott, M., Myers, M.J., Okamura, M., Gaines, D., Yancy, H.F., Lillehoj, H., Heckert, R.A., Raybourne, R.B., 2003. Effects of live attenuated and killed Salmonella vaccine on T-lymphocyte mediated immunity in laying hens. Vet. Immunol. Immunopathol. 91, 39–44.
[32] Wigley, P., Hulme, S., Powers, C., Beal, R., Smith, A., Barrow, P., 2005a. Oral infection with the Salmonella enterica serovar Gallinarum 9R attenu- ated live vaccine as a model to characterise immunity to fowl typhoid in the chicken. BMC Vet. Res. 1, 2.
[33] Wigley, P., Hulme, S.D., Powers, C., Beal, R.K., Berchieri Jr., A., Smith, A., Barrow, P., 2005b. Infection of the reproductive tract and eggs with Salmonella enterica serovar pullorum in the chicken is associated with suppression of cellular immunity at sexual maturity. Infect. Immun. 73, 2986–2990.
[34] Uchiya, K., Groisman, E.A., Nikai, T., 2004. Involvement of Salmonella pathogenicity island 2 in the up-regulation of interleukin-10 expres- sion in macrophages: role of protein kinase A signal pathway. Infect. Immun. 72, 1964–1973.
[35] Johnston CE, Hartley C, Salisbury AM, Wigley P. Immunological changes at point-of-lay increase susceptibility to Salmonella enterica serovar Enteritidis infection in vaccinated chickens. PLoS One (2012) 7:e48195. doi:10.1371/ journal.pone.0048195